期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Organic Chemistry and Synthesis. 2025; 1: (1) ; 20-27 ; DOI: 10.12208/j.ocs.20250005.

Comparative nutritional and organic matter of leaves and pods from herbaceous papilionaceae ecotype
草本蝶形花科植物叶片和豆荚的营养和有机质比较

作者: Lassané Ouédraogo1,3 *, Coulibaly Pane Jeanne d’Arc1, Abdoulazize Sandwidi1,2, Fanta Blagna1, Barkissa Fofana1, Badiori Ouattara1, Boukari Ousmane Diallo1, Martin Kiendrebeogo3

1 国家科学技术研究中心环境与农业研究所 布基纳法索

2 托马斯·桑卡拉大学多里大学中心 布基纳法索

3 约瑟夫·基-泽尔博大学应用生物化学与化学实验室 布基纳法索

*通讯作者: Lassané Ouédraogo,单位: 国家科学技术研究中心环境与农业研究所 布基纳法索;约瑟夫·基-泽尔博大学应用生物化学与化学实验室 布基纳法索;

发布时间: 2025-06-12 总浏览量: 25

摘要

猪屎豆和凹叶野百合是豆科植物,其叶片、豆荚和种子都具有丰富的资源潜力。然而,这些潜力尚未得到充分开发。本研究旨在评估布基纳法索不同生态型的猪屎豆和凹叶野百合叶片和豆荚(包括种子)的营养成分、有机质和抗营养因子。有机质含量由有机碳含量确定。Na用火焰光度计测定。N、Cu、P、Mg、Mn和Zn用原子吸收分光光度计测定。生物碱用重量法测定。单宁用AOAC方法测定。在不同生态型中观察到营养和元素含量的显著差异,尤其是氮(叶片p=0.021和豆荚p=0.0001)、磷(叶片p=0.0001和豆荚p=0.0001)、钠(叶片p=0.001和豆荚p=0.002)、锰(叶片p=0.006和豆荚p=0.001)和镁(叶片p=0.049)。叶片(91±1mg/kg)和豆荚(96.67±7.05mg/kg)中均含有高有机质。Gonsé叶片(27±3g/kg)和Arbollé豆荚(29.83±1.00g/kg)的氮含量最高。叶片中的磷含量为1.72至2.79克/千克,豆荚中的磷含量为1.82至3.34克/千克。与其他一些豆科植物相比,钠含量相对较低。豆荚中的镁含量最高(高达1701±12.6毫克/千克),叶片中的镁含量较低。豆荚和叶片可用作有机物或潜在的饲料。

关键词: 布基纳法索;生态型;营养成分;有机质;抗营养因素

Abstract

Crotalaria mucronata and Crotalaria retusa are leguminous plants with potential in their leaves, pods, and seeds. However, this potential remains largely underutilized. This study aimed to assess the nutritional content, organic matter, and antinutritional factors in the leaves and pods (including seeds) of C. mucronata and C. retusa from various ecotypes in Burkina Faso. The organic matter content was determined from the organic carbon content. Na was determined with a flame photometer. N, Cu, P, Mg, Mn, and Zn with the atomic absorption spectrophotometer. Alkaloids were determined by gravimetry. Tannins were determined using the AOAC method. Significant variations in nutrient and element content were observed across ecotypes, especially for nitrogen (for leaves, p = 0.021 and pods, p = 0.0001), phosphorus (for leaves p = 0.0001 and pods p = 0.0001), sodium (for leaves, p = 0.001 and pods, p = 0.002), manganese (for leaves, p = 0.006 and pods, p = 0.001) and magnesium (for leaves, p = 0.049). High organic matter content was found in both leaves (91 ± 1 mg/kg) and pods (96.67 ± 7.05 mg/kg). Nitrogen content was highest in leaves from Gonsé (27 ± 3 g/kg) and pods from Arbollé (29.83 ± 1.00 g/kg). Phosphorus levels ranged from 1.72 to 2.79 g/kg in leaves and 1.82 to 3.34 g/kg in pods. Sodium content was relatively low compared to some other legumes. Magnesium levels were highest in pods (up to 1701 ± 12.6 mg/kg) and lower in leaves. The pods and leaves can be used as organic matter or as potential forage.

Key words: Burkina Faso; Ecotypes; Nutrient content; Organic matter; Antinutritional factors

参考文献 References

[1] Subaedah, S., Aladin, A., and Nirwana. (2016). Fertilization of Nitrogen, Phosphor and Application of Green Manure of Crotalaria juncea in Increasing Yield of Maize in Marginal Dry Land. Agriculture Agricultural Science Procedia, 9, 20-25. http://dx.doi.org/10.1016/j.aaspro.2016.02.114.

[2] Arias, L., Losada, H., Rendón, A., Grande, D., Vieyra, J., Soriano, R., Rivera, J. and Cortés, J. (2003). Evaluation of Chipilín (Crotalaria longirostrata) as a forage resource for ruminant feeding in the tropical areas of Mexico. Livestock Research for Rural Development, 15. http://www.lrrd.org/lrrd15/4/aria154.htm.

[3] László, M. (2009). Crotalaria (Crotalaria juncea L.) Heavy Metal Uptake in Eastern Hungary. Geophysical Research Abstracts, 11, EGU2009-1374.

[4] Ouédraogo, L., Sandwidi, A., Coulibaly, P. J. d'Arc, Bassolé, M. S., Fofana, B., Blagna, F., Ouattara, B. and Diallo, B.O. (2024). Effect of Legume Ecotypes in Some Physicochemical Properties of Soil. Universal Journal of Agricultural Research, 12(2), 310-320. https://doi.org/10.13189/ujar.2024.120208. 

[5] Al-Snafi, A. E. (2017). The contents and pharmacology of Crotalaria juncea—A review. IOSR Journal of Pharmacy, 6(6), 77-86. https://doi.org/10.9790/3013-06067786.

[6] Alalade, J. A., Akinlade, J. A., Akingbade, A. A., Emiola, C. B., and Adebisi, I. A. (2019). Proximate Composition and Phytochemical Screenings of Crotalaria retusa Leaves and Seeds. Open Access Library Journal, 6, e5058. 

https://doi.org/10.4236/oalib.1105058.

[7] Rocha, A. L. (2011). Isolation and characterization of bacterial symbionts from Crotalaria spectabilis grown on trichloroethene contaminated soil. Master's Thesis, Missouri University of Science and Technology, 6909. https://doi.org/10.25388/mst.edu.6909.

[8] Barbosa, I. R., Santana, R. S., Mauad, M., and Garcia, R. A. (2020). Dry matter production and nitrogen, phosphorus and potassium uptake in Crotalaria juncea and Crotalaria spectabilis. Pesquisa Agropecuária Tropical, 50, e61011. 

https://doi.org/10.1590/1983-40632020v5061011.

[9] Tulu, D., Gadissa, S., Hundessa, F., and Kebede, E. (2023). Contribution of Climate-Smart Forage and Fodder Production for Sustainable Livestock Production and Environment: Lessons and Challenges from Ethiopia. Advances in Agriculture, 2023, 11 pages. https://doi.org/10.1155/2023/8067776.

[10] De Souza, A. J., Santos, E., Ribeiro, F. P., Pereira, A. P. de A., Viana, D. G., Coelho, I. da S., Filho, F. B. E., and Santaren, K.C.F. (2023). Crotalaria juncea L. enhances the bioremediation of sulfentrazone-contaminated soil and promotes changes in the soil bacterial community. Brazilian Journal of Microbiology, 54, 2319-2331. https://doi.org/10.1007/s42770-023-00777-5.

[11] Daimon, H. (2006). Traits of the Genus Crotalaria Used as a Green Manure Legume on Sustainable Cropping Systems. Japan Agricultural Research Quarterly, 40(4), 299-305. https://doi.org/10.6090/jarq.40.299.

[12] Ouachinou, J. M. A. S., Dassou, G. H., Azihou, A. F., Adomou, A. C., and Yédomonhan, H. (2018). Breeders’ knowledge on cattle fodder species preference in rangelands of Benin. Journal of Ethnobiology and Ethnomedicine, 14, 66. 

https://doi.org/10.1186/s13002-018-0264-1.

[13] WF, H., GEF, L., HA, B. and Hoffman, J. I. (1953). Applied Inorganic Analysis. 2nd ed. Wiley: New York. 

[14] Keeney, D. R. and Nelson, D. W. (1996). Nitrogen—Inorganic Forms. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; A. L. Page, Ed.; Agronomy Monograph No. 9; ASA and SSSA: Madison, WI, USA, 1996; pp. 643-698. 

[15] Jilani, A., Soulimani, R., and Dicko, A. (2006). New extraction technique for alkaloids. Journal of the Brazilian Chemical Society, 17(3), 518-520. https://doi.org/10.1590/S0103-50532006000300012. 

[16] AOAC. (1990). Official Methods of Analysis of the AOAC (15th ed.). Arlington, VA, USA: Association of Official Analytical Chemists.

[17] Sońta, M., and Rekiel, A. (2020). Legumes – Use for nutritional and feeding purposes. Journal of Elementology, 25(3), 835-849. https://doi.org/10.5601/jelem.2020.25.3.2003.

[18] Kone, A. W., Tondoh, J. E., Aduramigba-Modupe, V. O., Deleporte, P., Orendo-Smith, R., and Brunet, D. (2017). Legume and mineral fertilizer derived nutrient use efficiencies by maize in a Guinea savannah of Cote d'Ivoire. Agronomy Africaine, 29(1), 33-48.

[19] Gatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., and Savvas, D. (2021). Legume-Based Mobile Green Manure Can Increase Soil Nitrogen Availability and Yield of Organic Greenhouse Tomatoes. Plants, 10, 2419. 

https://doi.org/10.3390/plants10112419.

[20] Wang, Q., Liu, J., and Zhu, H. (2018). Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science, 9, 313. https://doi.org/10.3389/fpls.2018.00313.

[21] Santos, L. F. da C. dos, López, C. J. A., Medina, H. E., and Osornio, J. J. (2023). Growth and mineral composition of legume cover crops for sustainable agriculture in southern Mexico. Tropical Agriculture, 100(3), 182-190.

[22] Grela, E. R., Samolińska, W., Kiczorowska, B., Klebaniuk, R., and Kiczorowski, P. (2017). Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biological Trace Element Research, 180, 338-348. https://doi.org/10.1007/s12011-017-1003-7.

[23] Juknevičius, S., and Sabienė, N. (2007). The content of mineral elements in some grasses and legumes. Ekologija, 53(1), 44-52. 

[24] Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N., and Govaerts, B. (2014). Crop residue management and soil health: A systems analysis. Agricultural Systems, 134, 6-16. https://doi.org/10.1016/j.agsy.2014.05.009.

[25] Fu, B., Chen, L., Huang, H., Qu, P., and Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollution and Bioavailability, 33(1), 164-173. https://doi.org/10.1080/26395940.2021.1948354.

[26] Rawat, R., and Saini, C. S. (2022). Effect of soaking conditions in the reduction of antinutritional factors in sunnhemp (Crotalaria juncea) seeds. Food Chemistry Advances, 1, 100092. https://doi.org/10.1016/j.focha.2022.100092.

[27] Huang, Q., Liu, X., Zhao, G., Hu, T., and Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004.

[28] Thorringer, N. W. and Jensen, R. B. (2021). Methodical considerations when estimating nutrient digestibility in horses using the mobile bag technique. Animal, 15(1), 100050. https://doi.org/10.1016/j.animal.2020.100050.

引用本文

LassanéOuédraogo, CoulibalyPaneJeanned’Arc, AbdoulazizeSandwidi, FantaBlagna, BarkissaFofana, BadioriOuattara, BoukariOusmaneDiallo, MartinKiendrebeogo, 草本蝶形花科植物叶片和豆荚的营养和有机质比较[J]. 有机化学与合成, 2025; 1: (1) : 20-27.